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On the Behavior of Three-Dimensional Wave Packets

in Viscously Spreading Mixing Layers

Thomas F. Balsa

Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio 44135

and University of Arizona

Department of Aerospace and Mechanical Engineering
Tucson, Arizona 85721

We consider analytically the evolution of a three-dimensional wave packet generated by

an impulsive source in a mixing layer. The base flow is assumed to be spreading due

to viscous diffusion. The analysis is restricted to small disturbances (linearized theory).

A suitable high-frequency ansatz is used to describe the packet; the key elements of

this description are a complex phase and a wave action density. It is found that the

product of this density and an infinitesimal material volume convecting at the local

group velocity is nor conserved: there is a continuous interaction between the base flow

and the wave action. This interaction is determined by suitable mode-weighted

averages of the second and fourth derivatives of the base-flow velocity profile.

Although there is some tendency for the dominant wavenumber in the packet to shift

from the most unstable value toward the neutral value, this shift is quite moderate. In

practice, wave packets do not become locally neutral in a diverging base flow (as do

instability modes), therefore, they are expected to grow more suddenly than pure

instability modes and do not develop critical layers. The group velocity is complex; the

full significance of this is realized by analytically continuing the equations for the

phase and wave action into a complex domain. The implications of this analytic

continuation are discussed vis-a-vis the secondary instabilities of the packet: very

small-scale perturbations on the phase can grow very rapidly initially, but saturate later

because most of the energy in these, perturbations is convected away by the group

velocity. This remark, as well as the one regarding critical layers, has consequences for

the nonlinear theories.
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1. Introduction

An unstable shear flow, when excited by an external disturbance that is compact in

space and impulsive in time, is capable of dispersing this concentrated disturbance into

a wave train (or wave packet) of finite extent, which is convected by the underlying

(unstable) base flow. The classical work is due to Gaster (1975, Gaster & Grant 1975).

The term dispersion is used here in a generalized sense: not only do the various Fourier

components of the initial disturbance travel at different phase speeds (resulting in a

broadening of the spatial extent of the disturbance at subsequent instants of time), but

they also possess different growth rates. Therefore, any concentrated disturbance in the

flow evolves into a wave packet owing to the 'slippage' of the various Fourier

components with respect to each other and to the changes in the relative magnitudes of

these components, because of their different growth rates.

It is fair to say that our theoretical understanding of how such a wave packet

evolves in a homogeneous parallel base flow, under the small disturbance approximation

(i.e. linearized analysis), is quite complete (Criminale & Kovasznay 1962: Tam 1967;

Gaster 1975, Balsa 1988. 1989a). This is because we may use Fourier=Laplace

transforms in (x - z) space and time (see figure I) to solve the initial value problem and

then evaluate the corresponding inverse transforms, for large values of time, by

standard asymptotic methods. This yields a concise mathematical description of a wave

packet, including its receptivity with respect to the disturbance-producing impulse

(Balsa 1989a).

On the other hand, when the underlying base flow is inhomogeneous, either in

space or time, Fourier-Laplace methods are no longer applicable. If the inhomogeneity

is weak in the sense that the base flow changes slightly over one wavelength of the

primary oscillation in the packet, a suitable high-frequency analysis may be used (Balsa

1989b). Before we continue our discussion of this analysis, it is necessary to recall that

our wave packet has a modal structure (in the >,--direction) and the above-mentioned

T1 II_
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Fourier components are associated with (x, z)-space; the convection and dispersion of

the packet also occur in this space. Therefore, any weak inhomogeneity of the base

flow is understood to be in (x, z)-space and possibly in time, and the dependence of the

base flow on the cross-space variable, y, is arbitrary (see figure 1). Finally. we

emphasize that our attention is focused on wave packets generated by spatially compact

and temporally impulsive disturbances; it is possible to generate wave packets (or,

precisely, modulated wave trains) of much longer spatial extent by slowly varying the

amplitude or frequency of a spatial instability mode that is excited by a wave-maker.

We plan to examine the properties of these modulated wave trains in a forthcoming

paper.

The evolution of spatial instability modes in slightly inhomogeneous base flows has

been examined by a number of authors; perhaps the most relevant work for our

purposes is that of Crighton & Gaster (1976). These investigators found that as the

mode propagates downstream in a slowly diverging jet flow. the instability becomes

weaker and. as a result, the amplitude of the mode grows at a diminishing rate. In

fact, there is a streamwise location at which the spatial instability mode is locally

neutral and, at this location, the modal amplitude levels off, In other words, the

instability wave saturates because of flow divergence. Although these observations are

helpful in the interpretation of certain experimental data (e.g. Gaster, Kit & Wygnanski

1985), Goldstein & Leib (1988) recognized a very different significance, which provided

the framework for the rational composite description of the nonlinear evolution of an

instability mode.

Goldstein & Leib (1988; see also Hultgren 1992) argued that the evolution of an

instability mode in a diverging base flow merely represented the disturbed flow in a

suitable outer (i.e. upstream) region. This outer region slowly drives the most unstable

mode (generated at some location, say, x = -oo) toward its neutral state; just prior to the

attainment of this state, the disturbance develops a distinct critical layer (Maslowe
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1981). The flow in this layer is dominated by nonlinear effects, hence the outer region

provides the 'initial' conditions for this nonlinear flow analyzed by Goldstein & Leib

(1988) using asymptotic methods.

In a broad sense, our original objectives in embarking on this research were

twofold: first, the generalization of the ideas of Crighton and Gaster in describing the

behavior of three-dimensional instability wave packets evolving on top of slightly

inhomogeneous base flows and, second, the application of critical layer concepts, in the

spirit of M. E. Goldstein and his colleagues, toward a description of the nonlinear

phenomena in these packets. The present paper deals with the first of these objectives

in considerable detail, focusing on physical and mathematical issues relating to the

possible development of critical layers, the role of the complex group velocity and wave

action, and the secondary instabilities of the wave packet owing to the presence of an

inhomogeneous base flow. Several novel effects arise in this study--these have

important implications for the linear and nonlinear development of wave packets.

There are many approaches to studying the evolution of rapidly varying

disturbances (i.e. the wave packet) on a slowly varying system (i.e. the base flow). If

the disturbance is periodic, the 'method of averaging' yields the equations on the long

scales: when this procedure is applied to the perturbation Lagrangian_ a very powerful

method results for the description of the disturbance on the slow scales (Whitham 1974;

Hayes 1970). Although this method has been used for instability waves, it is only

applicable when the growth rates are asymptotically small (Landahl 1982).

For instability waves with finite (but numerically small) growth rates, a high-

frequency ansatz, in terms of complex amplitude and phase, is the proper way to

proceed (ltoh 1981: Balsa 1989b). One major difference between the analyses in these

two references is that the latter introduces the concept of a complex modal wave action,

_, which is the product of the square of the amplitude and suitable mode-shapes

integrated over cross-space. The importance of the wave action is clear from the

classical theories for conservative wave systems.

il I I_
r
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The present paper continues from where Balsa (1989b) left off. The outline is as

follows: In §2 the problem is formulated, the base-flow and disturbance equations are

briefly discussed, and the equations for the phase and the wave action are provided for

reference so that the reader does not have to consult Balsa (1989b), except for details.

Section 3 deals with the description of a self-similar base flow and the replacement of a

spatially diverging base flow by a temporally spreading flow. We believe that this

replacement, which offers a number of technical advantages leading to closed-form

solutions, is a very good approximation. A more complete justification is provided

later. In _4 and 5, results are given for the phase and the wave action. The phase,

which obeys a canonical dispersion relation because of a Squire-like transformation,

involves an integral of the local thickness of the mixing layer; this integral accounts for

history (or age) effects as the wave packet travels downstream, encountering sections of

a mixing layer whose thickness is slowly increasing. In §5 we provide a simple

expression for the complex group velocity, show that its divergence is real. and recast

the equation for the wave action into a form, (26b), that is most suitable for the

discussion that follows in _6. The important physical and mathematical results are

discussed in several sub-sections of §6; here attention is called to analytic continuation

(near the end of _6.2) and to the secondary instabilities in §6.3.

2. Formulation of the problem

In order to provide some feel for the key equations that will be used in subsequent

sections, we rely heavily on the general literature on the evolution of instability waves

in slightly inhomogeneous base flows (see Balsa 1989b and references cited therein) and

on classical kinematic wave theory (Whitham 1974) and its variants for modal waves

(Hayes 1970). Of course, with respect to the latter remark, our formalism is necessarily

very different from what is used in the classical theories because the concept of an

'average Lagrangian' cannot be used for instability waves. Generally, these waves are

not periodic in space (or time), except when their growth rates are vanishingly small.
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2.1. General remarks

For the unperturbed base flow, consider an incompressible free-shear flow (such as

a laminar mixing layer) whose velocity and pressure are denoted by U a and PB a

const., respectively. At moderately large Reynolds numbers, this flow is approximately

"parallel" in the sense that

U B - [I + O(_2)]U(y, _, T) + e[l + O(e2)]V(y, _, T)e 2 (la)

PB " const. + 0(_2) , << I (Ib)

where (e I , e 2, e3) are the unit vectors along the (x, y, z) directions, respectively; U • e2

- 0 (in other words, _V << l is the y-component of U B at lowest order). We now

proceed to introduce the terminology and notation: the geometry is illustrated in figure I.

Assume that all variables are nondimensional. Let /_,re f and Ure f stand for

reference quantities that are used to normalize all lengths and velocities, respectively;

we choose /.,re f to be the characteristic thickness and Ure f to be the characteristic speed

of the mixing layer. Thus, the Cartesian coordinate x - (x, y, z) is nondimensionalized

by /,re f, and time, denoted by t, is normalized by the transit time (Lref/Uref). As

customary in incompressible flows, pressures are measured in terms of 0/./2 where p -ref"

const, is the density of the fluid.

The slow spatio-temporal variables used in (la) are defined by

= _(xeI + ze3) , T = et (Ic)

where e = (Re) -l is a small parameter. Here, Re - const, denotes the Reynolds number

of the base flow: Re - LrefUref/v >> I (/,' - kinematic viscosity of fluid). Note that this

Reynolds number is based on a length scale associated with the thickness of the mixing

layer rather than on a typical streamwise length scale. For this reason, the expansion of

the base flow proceeds in powers of e - (Re) -! << 1 rather than in those of (Re) -!/2.
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It is well known that, under thestatedassumptions,the horizontal component of the

fluid velocity at lowest order, U, obeys the boundary layer equations

D__UU= c a2U (2a)
Dt Oy 2

where the time differentiation, following the base flow, is defined by

D 0 0
D-7 " _ + UB " _" (2b)

while the physical law of mass conservationrequires

•U B - 0 (24:)
ax

The slow variation of the base flow in the streamwise direction is contained in the fact

that (U, V) depend on (x, z, t) through the (slow) variables _ and r only. Thus, DU/Dt

is actually of O(0; therefore, a nontrivial balance is attained in (2a) at lowest order. In

other words, the slow streamwise evolution of the base flow, arising from its small

acceleration (positive or negative), is caused by viscous diffusion.

Let us now assume that this base flow is perturbed by an arbitrary disturbance

whose (perturbation) velocity and pressure fields are denoted by u = u(x, t) and p -,

p(x, t), respectively. The relevant linearized equations for these quantities are

Momentum: Du OI.lB 8p
D-7 +u" 8x =- 0-x +(V2u (3a)

0
Continuity: 0-x " u - 0 (3b)

where V 2 denotes the Laplacian operator in the variables (x, y, z). Our interest is in

the case where the perturbations are the instability waves of the base flow; these waves

may be considered inviscid when the Reynolds number of the base flow is larger than

about 500 (Betchov & Szewczyk 1963) and the base-flow profile possesses an inflection

point. Therefore, we ignore the last term in (3a) and assume that, in principle, U B is a

known function of its arguments.
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The following remarks should reassure the reader that the neglect of the viscous

terms in (3a) does not vitiate any of the major conclusions of this paper. First note that

viscous effects show up in (2a) and (3a): these, respectively, produce a viscously

spreading mixing layer and a (locally) small correction to the inviscid instability modes

of this layer. However. over the long (or global) streamwise scale of interest, namely x

ffi O(Re) - O(e-I ), both of these viscous effects formally produce an order-one correction

to the disturbance.

On the other hand, it is well known from the classical theories of wave motion that

slight inhomogeneities in a base flow can produce important and subtle effects (e.g. a

complex group velocity in our case) on the wave-like disturbances sustained by this

flow. It is precisely some of these new physical effects that we wish to uncover in this

paper.

To put it more quantitatively, suppose we replace e in (3a) by (Fe), where (for the

purposes of the asymptotics) F., O(l). Now we have essentially tagged the viscous

correction to the instability modes via the parameter F (which. of course, ultimately

must be set to unity), and separated this correction from the effects of a spreading base

flow. The latter effects show up as variable coefficients in (3a). When this is done, it

is found that the coefficient, H, in (10a) contains an extra term arising from the viscous

term in (3a) (see Balsa 1994; Hultgren 1992). Hence, H contains additively the effects of

base-flow inhomogeneity and those of viscosity. Therefore, it should be remembered

that the remarks we later direct at H apply only to the effects of a nonuniform base

flow.

To summarize, our objective is to provide a family of inviscid solutions for (3)

when the base flow varies slowly in the streamwise and spanwise coordinates (x, z). and

time t, owing to the viscous diffusion of this flow.

7 II
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2.2. Fluid displacement

The so-called primitive variables for the incompressible equations of fluid

mechanics are the velocity and pressure. These variables are convenient to use in a

large class of small-disturbance problems, especially when the base flow is a uniform

stream. On the other hand, when the base flow is dependent on space or time, even if

this dependence is slow in some sense, the use of these primitive variables is not

convenient for wave-like problems. This is because, often, there is a subtle energy

exchange between the base flow and the wave.

Classically, it is well known that for waves that do not exhibit an exponential

growth or decay, a most powerful technique for capturing this energy exchange is via a

variational principle and Whitham's (1974) average Lagrangian, which arises from this

principle. This suggests that the proper dependent variables to use for instability waves

traveling on art inhomogeneous base flow are those in which the equations of motions

may be expressed in terms of a simple variational principle. These dependent variables

are the fluid particle displacement and pressure; for a disturbance about a known base

flow, the perturbation displacement is clearly the most useful. In addition, it is simplest

to consider this displacement as a function of x and t rather than that of a Lagrangian

(i.e. particle) label and time. This leads to a hybrid Eulerian-Lagrangian description for

the instability wave, which is especially simple for linearized problems (Andrews &

Mclntyre 1978).

Therefore, in order to provide the disturbance equations in their purest form, we

replace the disturbance velocity u by a displacement variable a = a(x, t) such that

Da _ (4)
u" D'7-a" ax

A physical interpretation for a - a(x, t) is this: Consider a fluid particle of fixed

identity that occupies the point x (at time t) in the unperturbed base flow. The position

of this same particle in the perturbed flow (at time t) is defined to be (x + a). In other
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words, the particle that would have been at x in the base flow is actually in a slightly

different position (namely, x + a) in the disturbed flow.

Before we provide an asymptotic solution of (3) using a high-frequency ansatz, it is

useful to introduce some terminology. First, we think of the y-direction as the cross-

space (in which our disturbance has a mode--like structure) and of the _-space as

propagation space (in which our disturbance has a wave-like structure). Second, the

entire effect of base-flow spreading is succinctly contained in _" (Balsa 1989b), where

._ = 02U
8y 2 (S)

Finally, note that _" lies in propagation space and represents the (nondimensional) force

acting on a unit volume of fluid in the boundary-layer approximation.

2.3. High-/requency ansatz

The basic variables that we use to characterize a disturbance are the displacement

and perturbation pressure, (a, p). We expand these (see Balsa 1989b for details)

according to the usual high-frequency ansatz

a -, a(x, t) ffi (a(0) + ¢_1) + ...) exp(i_/¢) + cc (6)

where i = _ and cc stands for the complex conjugate of the term immediately

preceding it. A similar expansion holds for p; _ - ¢_4[, 7) is the complex phase of the

disturbance and a(J) - a(J) (y, _, 1") for i - 0, I. We emphasize that _ is complex,

although usually we refer to it simply as the phase.

The physical picture is that the base flow evolves on a 'long or slow' spatio-

temporal scale that is proportional to the Reynolds number while the local behavior of

the disturbance is determined by 'short or fast' spatio-temporal scales characterized by

the shear layer thickness and associated convection times. On the other hand, the global

evolution of the disturbance is dictated by the slow scales; hence the relevance of a

high-frequency ansatz.

! I I
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After substituting (4.6) into the linearized disturbance equations (3), and requiring a

non-trivial solution for (.)(o), we find the evolution equation for the phase

_ a__. _2(V_b, _. _') (7a)
Or

where f2 .. D,(k, _/, r) is. in principle, a known function of its arguments expressing the

complex local frequency, co .. f_ ,, --0O/_, as a function of the complex local wave

vector, k - VO. We call f2 the dispersion relation, and much of stability theory deals

with the determination of f2 for a variety of flows (Drazin & Reid 1981). More

generally, a dispersion relation is of the form g(aO/_r, V¢, _, r) - 0; in using (7a). we

have assumed that _ - 0 may be solved explicitly for aO/ar. For an incompressible

mixing layer, there is one such solution that represents the unstable mode of interest.

Note that V is the gradient operator in propagation space (0/Ox was used for this

operator in physical space) defined by

o5 oV - e I + e 3 _ (7b)

where _ - (_. D " _em + _'e3. Both the frequency and wave vector, (co, k), are local in

the sense that they depend on _ and r due to the viscous spreading of the base flow.

Furthermore, having satisfied the dispersion relation via (7a). the lowest-order

solutions (_0), p_0)) must be proportional to an instability mode that can be supported by

the base flow. If Pm" Pro(Y, _, 1", k) is the pressure mode at wave vector k and coo is

the Doppler-shifted frequency defined by

co0" coo(Y, _, 1")--[-_+ U. V_] (80)

then the lowest-order solution is given by

p(O) . A(I_, "r)pm(y, _, ¢, V@) (8/7)

where A ,. A([, _') is the slowly varying complex amplitude of the disturbance.

Similarly,
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where

(x(0) - A(_, TXQe 2 - iW) , W-e2=0

_2 Oy

(9a)

(9b)

(9c)

and Pm on the right-hand sides of (9b, c) is to be evaluated at k = X7¢.

Two remarks are in order: First Pm " Pro(Y, _. 7, k) satisfies a Rayleigh-like

instability equation at wave vector k; the coefficients of this equation depend

parametrically on $ and r owing to the inhomogeneity of the base flow. Second. the

separation of the displacement _o) (or more precisely the displacement mode) into

components in cross- and propagation spaces (in terms of Q and W) is done for

convenience (see (I 0b)).

In order to solve for the (.)0) perturbations, a solvability condition must be

satisfied. This condition determines the evolution of the amplitude A(_, r) or, more

properly, the evolution equation of the complex wave action density, _ - .af(_, r), on

0K
-_- + x7 • (G_) + H._ = 0

- J_(_, r) - A 2 I._¢oo(Q 2 + W • Vc'_dy

the long scales

where

and

(10a)

(lOt,)

H = (lOc)

I.._o(Q 2 + W • W)dy

_=III



- 13-

Recall that ,.qr is defined by (5) and note that H accounts for the viscously

spreading base flow interacting with the inviscid wave packet. It is precisely this

factor that vanishes in classical kinematic wave theory--thereby (10a) reduces to a

conservation equation for the wave action density .,_. The complex group velocity. G,

is defined by

I

O - af'/.,(k,,_,"r)I
ak Ik --V¢

(11)

so that ultimately both 13 and H (both complex) depend on /j and r only. Thus (10a) is

a partial differential equation for .A; in propagation space and time; this equation,

together with that for the phase, (7a), provides the lowest--order uniformly valid

solutions for the disturbances on the long spatio--temporal scales. In a linear theory, (7a)

and (10a) are effectively uncoupled.

The rest of this paper is devoted to obtaining solutions to these equations under

reasonable physical and mathematical assumptions, and to examining the secondary

instabilities of these solutions. We remind the reader that a detailed derivation of the

previously mentioned evolution equations for @ and ./C may be found in Balsa (1989b).

3. Temporally spreading base flow

Although the mathematical problems for the base flow and the disturbance may be

formulated quite concisely and with total generality (as in @2), the solutions to these

general problems are completely numerical. What we want to accomplish in this study

is to gain a thorough qualitative understanding of the physics and to generate semi-

quantitative results for a three-dimensional wave packet evolving in a spreading base

flow, such as a mixing layer. Therefore, we shall make a number of additional

approximations. These will enable us to obtain representative and illuminating closed-

form results.
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A wave packet is a wave train of finite extent: because of the instability of the

base flow and the resultant exponential growth of the disturbance, the dominant part of

a packet consists of a few oscillations only (Gaster 1975: Balsa 1989a). Thus the overall

length of a wave packet is very much smaller than the long viscous scales on which the

base flow is evolving, therefore at each instant of time, the spatial spreading or

divergence of the mixing layer is unimportant. Of importance is that at two instants of

time, say. r I and r 2, the wave packet is at successive streamwise locations, say, 4t and

42, at which the thicknesses of the mixing layer may be very different. It is possible to

simulate this effect by allowing the thickness to depend on time rather than space.

This approximation is equivalent to a temporally spreading base flow whose

characteristic thickness is _ - 6(r).

With this approximation at hand, we write

U - /-J'(.F, "r)_ 1 . V - 0 (12a)

so that the base flow is parallel to the x-axis. U obeys the classical diffusion equation

(to which (2a) reduces under the stated assumptions), for which we can obtain a class of

closed-form solutions. For example, if the two external streams of the mixing layer are

brought into contact at some early time, say. _- - -1, the vortex sheet between these

streams quickly diffuses into a mixing layer of finite thickness and U is expressible in

terms of the error function whose argument is the similarity variable

Y
- --_"r--x (lXb)

where

6 - 6(T) - (1 + r)1/2 (12c)

In view of these preliminary remarks, we write

1 _(_) ( 1 3)

where U on the right-hand side of (13) is any reasonable function (e.g. error, tanh, etc.)

!t ! ]
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that approximates the velocity profile of a mixing layer and 8(¢) is more or less an

arbitrary monotonically increasing function of time: 8(0) = 1. We include this

generalization over (12c) in order to estimate the robustness of our physical model.

although most of our discussion (unless otherwise stated) will invoke (12c) in order to

represent the effects of molecular diffusion most realistically. However. for 'turbulent'

diffusion it is much more reasonable to set 6(_-)= 1 + ¢ (Gaster et al. 1985).

We are now in a position to provide a more complete picture of the generation of

the wave packet. Suppose our base flow is perturbed at ¢ = 0 (when _ = 1) by a

spatially compact disturbance that is impulsive in time. The concentrated disturbance

imparted to the flow quickly disperses into a wave train of finite extent, which contains

the exponentially growing part of the disturbance signal, arising from the instability of

the mixing layer. The entire wave train is convected downstream (at a convection

speed, say, Uc) while the disturbance at the center of the packet is growing at the

maximum growth rate associated with temporal instability. The formation and

evolution of such a wave packet is well understood in the case of a non-spreading flow

(i.e. 5 = 1): our objective is to describe this evolution in a self-similarly spreading base

flow (i.e. 8 = 80")).

4. Dispersion relation and the phase

Under the assumption that the base-flow velocity profile depends only on the

similarity variable _ - y/_(y), considerable progress can be made in representing the

dispersion relation and the modes in terms of certain canonical quantities. Let us

consider a function P = P(T/) (the canonical pressure) that satisfies a Rayleigh-like

equation

[c - u(n)]2 [c -

with boundary conditionsP -_0 as _ -*_+co.Here, _ is a given complex number. In
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order to obtain a nontrivial solution to (14a) we must have

and

C = C(g) (14b)

P = P(rl, _) (14c)

On the other hand, the actual pressure mode, Pm = Pro(Y, r, k), satisfies the Rayleigh

instability equation

a[ ,  l-k[a - ku(_)]2 _ [_2 - _u(n)]2 ay j
(15)

where the wave vector is k = (k, 1) = ke I + le 3 and the dispersion relation is f2 ,,

f2(k, r). The boundary condition requires that Pm "_ 0 as y -_ _+oo.

Upon recalling that 11-- y/a(r) and comparing (14) and (15), we find

pm(.l:, r, k) ,- PIt/, 6(r) (k2 + 12)l/2] (16a)

= C[_r) (k 2 + t2)1/2] (16b)
k

where k • k = k 2 + 12. In some sense, (16a, b) may be thought of as a Squire-like

transformation; more precisely, these equations express the fact that the pressure mode

and the complex phase speed, f2/k, depend on the combined entity (k 2 + _2)_/2 rather

than individually on k and t.

In view of these remarks, it is easy to see that the canonical quantities P and C

represent the pressure and complex phase speed of a two-dimensional mode (at complex

streamwise wavenumber _¢ = k) at the initial instant of time (when 6 = I). There

remains to say a few words about the velocity profile. U = U(r_), and the canonical

phase speed, C -- C(_:). We set

where

u(r_)= uc + -_/(r_) (17a)
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U c - U1 + U s2 (17b)

AU = U I - U2 > 0

and /(7) " -1 as _ -_ +-_.

layer are given by U I (= 1) and U 2 > 0; see figure 1.

In order to obtain quantitative results, we let

(17c)

Clearly, the speeds in the two external streams of the mixing

tanh r/
/(rl) = or

erf(_)

-_ < r/ < oo

(18a)

(18b)

These velocity profiles are plotted in figure 2; also shown in this figure are the two-

dimensional growth rates of temporal instability (i.e. _CI(_:); _: real) for each of these

profiles. Here

C ,- COt) " C R (_) + iC I (re) (I 9)

where C R and C I denote the real and imaginary parts of C, respectively. It is well

known that in the temporally unstable range of _:, C R = U c .

Both growth-rate curves in figure 2 are quite close to each other and also to a

parabolic shape with a neutral wavenumber of 2% (--- I) and maximum growth rate of "y

(-_ 0.I) occurring at the wavenumber _o (--- 0.5). We now replace the actual growth-rate

curves by a single parabolic approximation (roughly the average of the two curves) and

analytically continue the latter into the complex plane. Thus, for complex _,

COc) = U c - _202(_ - 2_o)
(20)

where U c, % and % are suitable parameters associated with the instabilities of the base

flow. The evolution equation for the phase becomes, via (7a) and (16b).
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where _ = ffi and C, as a function of its argument, is given by (20).

We shall solve (21) for the phase, _bffi _, r).

After substituting (20) into (21), we obtain a first-order nonlinear partial

differential equation for 0. The solution of this equation, obtained by standard methods

(Courant & Hilbert 1966, p. 97) is conveniently written in the form

where

= 0(_. r)= - _ Of(O_ + _),/2 Y(r) (22a)

J = J(r) = IO _(r')dr' (22b)

is the integrated thickness of the mixing layer up to the current time.

In order to make the phase in (22a) an explicit function of _ and r, we must

express the local wave vector, V_b., (_, _), as a function of these variables. This is

done in Appendix A. A discussion of the results for the phase, wave vector, etc., will

be provided in §6. The role of U c, 7, and r,0 in determining the dynamic similarity of

the flow is explained in Appendix B. Note that the phase vanishes at the initial instant

of time, r - 0, when the base flow is disturbed impulsively.

Some remarks are in order: First, it is possible to obtain C = C(r) numerically,

tabulate these results on a grid in the complex r-plane, and then use these tabulated

values (with some form of interpolation) to solve (21) numerically. This we wanted to

avoid, at least in the present study, in order to develop some analytical feel for the

behavior of the phase and its secondary instabilities. Second, the approximation of the

growth-rate curve by a parabola is quite good (even when 3' is finite) and becomes the

correct asymptotic limit for many flows in the vicinity of the critical value of an

externally adjustable parameter that separates regions of stability from those of

instability. Third, for a mixing layer, the maximum temporal growth rate itself is

proportional to the velocity difference AU - U I - U2; 3' - 0.2r-0AU is a reasonable

_il ! I
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approximation for both the tanh and erf profiles (see (18) and (17a)). Finally. J/T is the

average thickness, say, 3 = _0"), and the quantity 0"8/.]), which appears throughout the

analysis, may be interpreted as the ratio of the current (or qocaI') and the average

thickness, 8/3 > I.

5. The amplitude equation

With the solution for the complex phase out of the way, we now focus our

attention on the equation for the wave action, (10a). One objective is to derive an

interesting expression for H. under the assumption that we have a temporally spreading

and self-similar base flow, as described in §3.

We begin with the group velocity, (3. After expressing the dispersion relation, _ =

fl(k, 7), in terms of the canonical phase speed C = C(_) via (16b), employing (20), (11),

and our results for _7_ (see A 3,4), we obtain

and, from (23a),

(23a)

V • G = 2 8/J (23b)

It is rather easy to establish (23a) for two-dimensional disturbances (in which case only

the first term on the right-hand side survives); however, for three-dimensional

disturbances, considerable algebra is needed.

Note first that the group velocity is generally complex; the imaginary part of the

streamwise component is proportional to the growth rate, 7, while the imaginary part of

the spanwise component vanishes.

the group velocity is actually real,

Second, for a non=spreading base flow (i.e. 8/3 = 1),

(3 .. _/r (24)

This result (i.e. (24)) is well known from the stationary-phase analysis of classical
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parallel flows (Gaster 1975). Interestingly enough then, wave packets in a spreading

base flow differ in an essential way from those in non-spreading flows because of their

complex group velocities: the physical implications of this will be discussed in §6 in

terms of the secondary instabilities of the packet. Third, the divergence of the group

velocity (i.e. V-(3 - 2_/J - real) is interpreted as the term responsible for the

algebraic time-decay of the complex wave action: specifically, momentarily setting

H ffi 0 in (10a) we find

./t_f z - const. - adiabatic invariant (25)

for an observer (formally) moving with the group velocity. In other words (or still with

H = 0), A ~ j-l a result generalizing the classical stationary-phase analysis that gives

A ~ r "i for a wave packet in a non-spreading base flow. For example, if 6 ~ 1.1/z due

to the molecular diffusion of the base flow, A ~ j-I ~ 1.-3/2: therefore, the algebraic

decay of the amplitude is enhanced owing to the effects of flow spreading. This effect

is even stronger in a 'turbulent' flow where we might set 6 ~ 1. so that A ~ 1.-2. These

simple scaling rules, especially when it is realized that _ ~ 1. for a convected wave

packet in a spatially spreading base flow. make considerable sense physically.

Based on these opening remarks, we introduce

where, in view of (10a), _ satisfies

. ,_j2 (26a)

and H is defined by (10c).

+(3-ff_+H_-0 (26b)

We now obtain a more explicit representation for H; it is

this coefficient that ultimately contains the most important interaction between the base

flow and the inviscid wave packet. This interaction is completely absent in all classical

theories of wave action.

1t |i:
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First use (16) in the definitions of Q and W, (9b.c) in order to write these equations

in terms of the canonical pressure mode P; replace all y--derivatives and integrals with

those involving 7, use (7a), (Sa). and (16b) and define

too
N(_)= I U"'(_) P(_,_)P'(,_,_)d_

[C(_)- U(_)]4J-oo
(27a)

and

I,_ {[p.(_. g)]2 + _2p2(_, _)}d_
1

D(_)- [C(_)U(_)]3
(27b)

F(_) =- _ (27c)

where the prime denotes differentiation with respect to 17.

62 (r)

(12a) we find

Then from (10c), (5), and

(28)

After some integrations by parts in (27a, b) and invoking the Rayleigh equation,

(14a), we arrive at a representation for F(x), namely,

F(_)= (U'"'>
<u">

where <h)denotesa mode-weighted average of h = h(_),defined by

(29a)

[p,(_._)]2

[c(_)- U(_)]4 d_ (29b)

Of course, (-> is a function of a single complex variable, say, g.

Thus, apart from the scale factor 6-2. the coefficient of _ in (26b) is expressible as

the ratio of the weighted averages of the fourth and second derivatives of the base

velocity profile, U = U(_), evaluated at [8(#_ + _)1/2]. After substituting (A 3.4) for _7_

into (28), we get
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H - H(_, r) (30)

In _6 we discuss the behavior of F, both as F - F(g) and as F - F($, r), via the

substitution ,: -- _(rX¢_ + ¢_)1/2.

A feature of (29a) is that F00 is independent of the velocity ratio (U I - U2)/(U I +

U2). Therefore, H may be determined, once and for all, for each intrinsic velocity

profile /., 1(_) (see (17), (18), and Appendix B). It is also important to appreciate the

somewhat misleading form of (28), which arises because our base flow is self-similar; a

more penetrating interpretation for 8.2 is 2b'/_. This is valid whenever the base flow is

spreading due to molecular diffusion (i.e. b - (1 + r)x/2); here $' - dS/dr. Thus, H

vanishes when 8' is zero (i.e. _ -- const.), and for a self-similar profile this takes place

as _ -* oo. These remarks make a great deal of sense physically.

Finally, observe that when g equals the neutral wavenumber (say, gn -_ 2_) both

the numerator and denominator of (29a) possess a first-order pole at _ - 0, and the

integral in (29b) is to be evaluated by letting the contour of the integration pass below

this pole in the complex _-plane. In fact. in this special case, the entire contribution to

the integrals comes from the pole (i.e. the critical layer) because, for real _, the

integrands in (29a) are odd functions of _. For this reason we can evaluate F(gn)

analytically. Thus we get a simple result that provides a check on the numerical results

presented in §6.

°

wave vector, V¢, may be written as products of temporal and spatial factors.

X l "_ -- UC

T

Discussion of results

6.1. The phase and wave vector

From (22a) and (A 1,2) it is seen that both the complex phase, _, and the local

Introduce

(31a)

I ! I
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Z = _ (31b)
T

T = _" (31c)

fb = L_ 4,(X, Z) (32)

where _ = _(T) = J(T)/T is the average thickness and _, as a function of its arguments,

can be calculated once and for all. We say that a 'fixed' point in the wave packet

corresponds to X = (X. Z) = const., for example, the point X = Z = 0 is at the center of

the packet.

Observe from (32) that for a non-spreading base flow with _ - 8 - const. - I, the

phase is proportional to T so that the age of a disturbance is directly measured by its

phase. On the other hand, for a spreading base flow, the phase varies less strongly

with time because the average thickness of the layer, 8, is monotonically increasing with

time. For large values of time, we estimate the phase to be proportional to TI/z and T o

= const., respectively, for laminar' (i.e. 8 ~ T'/2) and 'turbulent' (i.e. 8 ~ 7") diffusions of

the base flow.

In accordance with the high=frequency ansatz, (6), the imaginary part of the phase,

_bI = Im(_b), is a measure of the magnitude of our exponentially growing disturbance on a

log-scale. In view of our remarks in the preceding paragraph, the disturbance grows

linearly initially, followed by a milder growth (such as a square root behavior) for

larger values of time (all on a log=scale, of course). Clearly, the effect of base=How

spreading is to inhibit the growth of the disturbance, as expected intuitively, but in a

base flow dominated by molecular diffusion, the disturbance continues to grow in

magnitude for all values of time. This is very different from what happens to a single

instability mode in a spreading base flow; such a mode always becomes 'neutral' for

some finite value of time (or streamwise location), as demonstrated by Crighton &

Gaster (1976). We shall provide a convincing explanation for this difference shortly.
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In figure 3, we show contour plots of the real and imaginary parts of q_ as

functions of (X, 2"). It is important to recall that these plots are independent of time

and represent the spatial factor of the phase (see (32)). With reference to figure 3(b),

we see that Im(_) = @I is negative in the central portion of this figure; thus the wave

packet is unstable in this region. Furthermore, we may think of the closed curve

_I = 0 as the boundary of the packet and the exponentially large disturbance near the

middle of the packet diminishes with distance away from its center (at X = 0). Within

the footprint of the wave packet, the lines of constant phase, _R = const., are practically

parallel (see figure 3a), thereby indicating a wave structure whose wave fronts are

perpendicular to the streamwise direction (and, in conjunction with figure 3b, a

structure whose magnitude diminishes in the X and Z directions). These remarks are

perfectly consistent with Balsa (1989a), in which a surface plot of a wave packet is

provided in a constant-thickness mixing layer.

In figure 4 we show the spatial factors associated with the local wave vector V_;

these are obtained by pulling out the time factor, %/], from V¢. In other words, we

write

V¢ - (_, _) = _ K(X, Z) (33a)

where K - (K, L) is the desired spatial factor.

We note from figure 4 that a large region near the center of the packet is

dominated by a wave vector K, whose real part is roughly (1. 0). Therefore, in this

same region,

Re(V_) _ _ e t (33b)

so that the dominant wavenumber in the packet is continuously shifting to lower values

with increasing time. This is clear physically: As the thickness of the mixing layer

increases, the wave packet tries to adjust its length scale such that it stays in step with

the local length scale of the base flow. Note that initially (at T - 0 with _ - 1) the

:-t ! I
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dominant wavenumber in the packet is the most unstable wavenumber, g0, of temporal

instability. Of course, as the thickness of the mixing layer increases, the local

dispersion relation is shifting as well; it is possible to visualize this shift on figure 2(b).

Roughly, with increasing time, both the maximum growth rate and the range of unstable

wavenumbers diminish--the growth-rate parabola is effectively 'collapsing' toward the

origin. A most important point to note is that this phenomenon is happening on the

local or instantaneous thickness, 8 - _r'), rather than on the average thickness, _ - _(T).

Thus, at any instant of time, the maximum growth rate and the neutral wavenumber are

given by

_fmax" -_ 'On" 2_ (34a,b)6" 6

We are now in a position to explain "_,hy the wave packet does not become neutral

(or does not saturate) as a result of a spreading base flow caused by molecular

diffusion. From (33b) and (34b), the ratio of the dominant instantaneous wavenumber at

the center of the packet to the local neutral wavenumber is

8 3
2 o/8 " as T -. oo (35)

Thus. over the largest possible time interval, the dominant wavenumber of the packet

shifts from the most unstable value to (roughly) half-way toward the neutral

wavenumber. Therefore. a wave packet does not become neutral in a spreading base

flow; in practical terms, a wave packet is likely to grow more violently than a pure

instability mode in a given base flow. This is exactly what had been observed by

Gaster (1981). although his qualitative explanation for this observation is very different

from ours.

Since the total wavenumber, (0_ + _)1/2, also plays an important role in our

analysis, its corresponding spatial factor (i.e. (K • K)I/2) is presented in figure 5. Very

roughly, the real and imaginary parts are proportional to (1 - Z21c_]2-/2) and X_o/2%
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respectively. It is possible to provide a much more accurate, though still approximate,

representation of these quantities: this we shall not do for the sake of brevity.

6.2. Complex wave action

The equation that governs the evolution of the modal wave action is (26b); in the

classical theories, _ (of course, real in this case) would be the adiabatic invariant of the

system. In the present analysis, _ is no longer a conserved quantity because of the

presence of a nonzero H. Thus

- +O" V _ --H_ (36a)

where d/d7 formally expresses time-differentiation for an observer moving with the

group velocity. Our objective here is to shed some light on the evolution of _ by

examining the behavior of H, both in wavenumber space and in propagation space.

Additionally, in the next sub-section, we discuss the implications of a complex group

velocity vis-a-vis the secondary instability of the packet.

Since, from (28),

4-

620. ) (36b)

we start with a discussion of F - F(_). This complex quantity, as a function of

(complex) _. has been evaluated numerically from its definition, (29a), for both the tanh

and the erf profiles. The results are presented in figures 6 and 7.

Note first from figure 5 that the real part of the spatial factor associated with the

total wavenumber, (0_ + 0_) _/2. varies from 0 to 1 while its imaginary part varies from

-1 to 1. Essentially, the complex argument of F in (36b) ranges over the Cartesian

product (0, 3_0/2) x (-3_/2, 3s,0/2 ). In this domain, Re(F) - 62Re(//) is negative so that

the effect of base-flow spreading is to increase the magnitude of _: this increase is

algebraic on the slow viscous time scale, 1", and its order of magnitude is very roughly

'i ! i
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74 near the center of the packet. Thus, owing to flow divergence, the disturbance is

capable of extracting additional energy from the base flow via Reynolds stresses

evolving on the long spatial and temporal scales. Because of the strong similarity of

figures 6(a) and 6(b) for the tanh and erf profiles, we believe that our previous

conclusion is quite general. As mentioned already, at the neutral point, g = gn, F may

be evaluated analytically, these values are -8 and -6 for the tanh and erf profiles,

respectively. These theoretical results are entirely consistent with those given in figure 6.

In figure 7, we show the behavior of Re{F[_(_ + _)_/z]} in propagation space, X,

for three values of time (1"= 0, 2, and 10). These results are obtained by combining

those in figures 5 and 6. Because of the temporal factor associated with the argument

of F in the expression above. Re(F) is time dependent; however, this time dependence

is relatively slow in comparison with the variation of 6-2 in (36b). Thus, near the

center of the packet, _-I d_/d_" m const./(l + T). where the real value of this constant

of proportionality is about 4 at early times and is around 5 at large times. This results

in an algebraic growth of the wave action _, as discussed previously.

In order to understand more fully the evolution of the wave action and the role of

a complex group velocity, we perform a number of manipulations on the governing

equation, (26b).

if"

First invoke coordinate transformation (31) and introduce a new time,

if" = log _(T) when d_/d¢ > 0 (37a)

so that (26b) may be thrown into the form

+ - + z + H = o (37b)

This transformation fails when the base flow is not spreading since (37a) is

meaningless. Second, separate (37b) into its real and imaginary parts and then extend

this 2x2 system of real equations into the complex plane by writing
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X -* X + iY (38a)

and

_R(X, Z, 9") _ _R(X + iY, Z, 9") ,. B I (X, Y, Z, 67")

_I(X, Z, 9") -* _t(X + iY, Z, 9") - B2(X, Y, Z, 9")

(38b)

(38c)

with similar expressions for H - H R + iH t ., (H R, HI) --, (H I , H2). Our basic

unknown now is the complex two-vector B ,. (B t , B2); it satisfies the Cauchy-Riemann

equations. Because of this, we can selectively eliminate 8]aX in favor of O/JOY and

rearrange (37b) as

I y 2_.Z]

i%

a__ aB aB aB+Xa-x+ y aT+Za-z +
iv,0

I H_ , -H 2 lJ(T) S

H2.H,
* 0 (39)

Finally, it is important to realize that Y has nothing to

coordinate y, and any physically meaningful solution of (39) must be evaluated at Y - 0.

The most important difference between (37b) and (39) is that the former equation is

elliptic (with complex characteristics) whereas the latter is a symmetric hyperbolic

system (actually hermitian) with real characteristics. In fact, if the characteristics of

(39) are the level surfaces _(X. Y. Z, 9") - const., then _ satisfies

and thus the parametric representation of the (-+)bicharacteristios of (39) are

do with the cross-space

9" - o" (41 a)

X., X 0 eu (41 b)

y = Y0e, ± 2"y (1 - ea) (41c)
%

i! I ]i

_-.'.
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Z - Z0e_ (41d)

where ¢ (= 9") is the parameter and (X0. Y0, Z0) represents a point on the

bicharacteristic curve at the initial instant of time, ¢ - T ,, if" - 0. In essence, these

bicharacteristics may be interpreted as the real rays arising from the complex group

velocity associated with (26b) (or, actually, more precisely with (37b)).

In order to obtain the solution at an arbitrary point, P - (X, Y - 0, Z), for a certain

value of time (say, 9" - _), we construct the two "backward-running' bicharacteristics in

order to pick up the initial point, (X 0. Yo, Z0), via (41) (see figure 8 for the geometry).

At this point the initial value of B is available from the analytic continuation of the

specified initial data in propagation space. Note that even though Y - 0, Y0 ÷ 0, so that

in order to obtain the physical solution a: P we must have the analytic continuation of

the initial data at hand. We shall implicitly assume that this continuation is always

possible.

Along each of the (-) bicharacteristics, (39) reduces to a first-order, linear, ordinary

differential equation for the corresponding characteristic variable, (B l ± iB2). Each of

these equations may be solved by elementary methods involving the quadratures of H l

and //2- The general qualitative nature of this solution has been anticipated earlier in

this sub-section.

It is important to realize that, because of the complex group velocity, there are

actually two rays (or bicharacteristics) passing through each point in propagation space.

The projection of these rays onto propagation space is a radial line; the two rays are

indistinguishable in this space.

6.3. Secondary instabilities

Because the group velocity is complex, (37b) is a real 2x2 elliptic system for _-

(_R, _I)- For such a system, the initial value problem at _" - T - 9" - 0 is 'ill posed'

in the sense of Hadamard, although for analytic initial data, a properly posed solution
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exists, at least locally in the immediate neighborhood of the initial hypersurface. We

interpret the global ill-posedness as the secondary instability of the wave packet.

In the preceding sub-section we have transformed this ill-posed elliptic system into

a well-posed hyperbolic system. This transformation is somewhat misleading because

the analytic continuation of the initial data is, in itself, an unstable process (more about

this later); specifically a typical rapid, but perhaps spurious, oscillation of wavenumber

n_:0 (n >> 1) along the X-axis is converted into an exponentially large value when

analytically continued into the complex plane, beyond the strip IF[ = O(l/n_o). The

two crucial heuristic questions are these: (a) How far do we need to continue the

initial data into the complex plane in order to describe the evolution of the complex

wave action for all values of time? (b) What is the role of the group velocity in

advecting spurious disturbances away from the footprint of the packet, which, after all,

is confined to a fairly small region in (X, Z) space (see figure 3)? We will be able to

answer both of these questions quite satisfactorily by considering the secondary

instabilities of the packet.

In order to accomplish this, we perturb the phase by a small quantity, _, so that

Total Phase - _ + $ (42a)

where _ is given by (22a). Since the total phase satisfies dispersion relation (7a), it is a

simple matter to show by linearization that the perturbation phase, _, satisfies

8_ ÷ (3 • V_ = 0 (42b)

This equation is exactly the same as (36a) with H = 0, so that the previous

discussion on analytic continuation is applicable to (42b). For example, if _°)(X, Y, Z)

U = 1, 2) represent, respectively, the analytic continuation of the initial data, _)(X, Z)

(u = R = real; g = I = imaginary parts), then by the method of characteristics outlined in

§6.2, the solution for the analytic continuation of _R -_ _l is

_i i l
_y-_._-;,"_
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Ol (X, Y, Z, _ = _o) e-_', ye-,9" - 2-2(e-g- - I), Ze -9"
go

1}+ O_°) Xe -g', Ye -g" + 2-_o(e-_" - l), Ze -g"

,{.) -+ -_ t°) e-g',Ye -g" - 2_(e-g"- l)oZe -g"
_0

__O)_e-g" ' ye-g'+ 27go(e_g"- l), Ze-g']} (43)

A similar equation holds for 02 (i.e. ¢I -_ $2); these equations are valid for all values of

time.

The formal similarity between (43) and the classical D'Alembert solution for the

simple wave equation is absolutely striking. Apparently the initial data split into two

halves; each of these propagates along one of the bicharacteristics, and these two halves

add (or subtract) at subsequent instants of time to form the required solution.

We are now ready to answer the two questions raised previously. For large values

of time, 9" -_ co, the physically valid solution at a fixed (X. Z) is

. 0 i001..,o.i0.001}
-_ _ . 27.0 - _o) . _27.0 (44,,)

go Ko

lI,,ioi

Since .9" is a logarithmic time scale, (see (37a)), the asymptotic result represented in (44)

is actually attained only algebraically fast on the physical time scales r or T.
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The physical interpretation of (44) is this: An arbitrary initial disturbance in the

phase is advected away from the footprint of the wave packet by the real part of the

group velocity. This advection is radially outward in propagation space so that any

disturbance that is not at X = (X, Z) = 0 will be convected out of the packet.

Therefore, the solution for large values of time will be dominated by the initial

disturbance near X - 0; this disturbance cannot be advected away since the real part of

the group velocity vanishes at the origin. More precisely, it is the analytic continuation

of this initial data into the interval [Y[ _ 27]_ 0 that actually matters. Therefore, a

spurious rapid oscillation of the phase at a characteristic wavenumber, n_ (n >> 1), will

attain the value exp(2trt) for very large values of time.

This result is interesting. It says that perturbations of the phase will saturate;

therefore, at large values of time, the total phase will be dominated by _. This is exact

in the linear theory. In other words, as 9" -, co, _ -_ _b_ (- complex const.) so that the

complex phase, _. jumps by fixed amounts as a result of the asymptotic response to the

perturbations in the phase.

On the other hand, it is easy to see from (43) that for small (or moderate) values of

time, the above-mentioned rapid oscillations in the phase will grow as exp(2rrrr). This

observation, combined with the fact that the actual problem is nonlinear, strongly

suggests that once these small-scale, rapidly growing (though only initially) disturbances

are triggered in the flow, they will lead to the secondary instabilities of the wave

packet.

It is also possible to study the evolution of small disturbances riding on top of the

wave action, _, by writing

Total Wave Action -, _ +/_ (45)

where/_ is the perturbation. After substituting (45) and (42a) into (26b) and linearizing,

we arrive at an equation for/_. This equation is very similar to (26b); essentially H is

! li
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replaced by derivatives of F and O = a_]ak with respect to the wave vector, because

of the perturbations in the phase. It is beyond the scope of this paper to study the

solutions of this equation; we plan to examine this equation in a forthcoming paper in

which we will study the secondary instabilities of an instability mode (rather than a

wave packet).

7. Conclusions

It is well known that an instability mode evolving in a spreading base flow attains

a neutral state at some streamwise location. This is not the case for a wave packet:

The dominant wavenumber in a packet is such that the local growth rate associated

with it is in the vicinity of the maximum growth rate of the local dispersion relation.

Although there is some shift toward the neutral wavenumber (and away from the most

unstable one), this shift is far from complete even as _ (or 0 " oo. For this reason, a

wave packet is expected to grow more violently than an instability mode in a given

spreading base flow.

The wave action, _, is no longer a conserved quantity; because of the interaction

between the base flow and the disturbance, _ grows algebraically on the slow time

scale, r. The group velocity is complex, and the equation for the wave action may be

converted into a symmetric hyperbolic system via analytic continuation. We use this

hyperbolic system to study the behavior of the perturbed phase. It is found that small-

scale disturbances to the phase grow very rapidly initially and then saturate at later

values of time. We interpret this initial growth as the secondary instability of the

packet.
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Appendix A. Dependence of wave vector on space and time

We obtain a formal solution to (21) using the characteristic differential equations

belonging to (21). Since the wave vector, V_, is constant along the complex rays, the

trajectory of these rays may be solved for quite simply, with the initial condition that

Weall rays emanate from the spatially compact source of the disturbance at _ = 0.

express the equations of the rays in (_, T) space as

,- u** - 2/w/_. _(,_+ @,2 (A I)

(A 2)

where the wave vector V_ = (St, _[) may be thought of as the label that identifies a

specific ray in propagation space (or, more precisely, in the analytic continuation of this

space).

In order to obtain V$ as a function of t and T, we must invert (A 1,2). Let a and

b temporarily denote the left-hand sides of (A 1,2), respectively. We first form the

ratio (a]b), rearrange this to obtain a quadratic equation for (_b_/$t) whose solution, in

conjunction with (A 1,2), yields

and

where

Ce = [a2 + 4l# + a_I=2v/_ (A 3)

_r= [a2- 2_ - aS]m4_ (A 4)

= [a4 + 20a2_ - 8/,4 + aS3]*a (A 5)

;.. :- .-

_! Ill
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S = (a 2 - 862) 1/2 (A 6)

The outside square root on the right-hand side of (A 5) is chosen such that Im(0) =

¢I < 0 (see (6) and (22a); thus we have an exponential instability), while the other

fractional powers in (A 3,4) and (A 6) are chosen so that, in the first place, ¢_ and 0f

are analytic functions of _ = (_, _') and that, second, the spatial derivatives of 0, as

obtained from (22a), are equal to (A 3,4). Although it is cumbersome to verbally

express these constraints on the fractional powers, it is simple to program them on a

computer by examining the alternatives in 'if statements.'

In essence, (A 3.4) provide _70 as functions of (_. r) and, when these functions are

substituted into (22a). we obtain 0 = 0(_, r). This is the desired result for the phase.

Appendix B. Dynamic similarity and scale transfornmtion

The theory outlined in the main body of this paper contains three free parameters

(see 20): the convection speed, Uc = (U I + U2)/2; the maximum growth rate associated

with the canonical dispersion relation. "y a, 0.2go(U1 _ U2); and the corresponding

temporal wavenumber, go _ 0.5. The numbers just provided for "y and go are

reasonably accurate for both the tanh and erf profiles (see (17) and (18)).

What we wish to emphasize here is that the dependence on these three parameters

can be eliminated completely by the introduction of new space variables. Very briefly,

from (A 1.2), (31). and (A 3,4), we see that

VO = go (spatial factor) (B 1)

where the (spatial factor) in (B 1). essentially K of (33a). depends only on the variables

Xgo/'y and Zgo/'r. Note that X and Z have physical units of speed, and a most

important speed that totally governs dynamic similarity is the 'instability speed.' "r/g0 ~

AU = (Ul - U2).
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Similar remarks hold for the spatial factor of the phase, (32), and the group

velocity, (23a), relative to the convection speed

G-U_e I , _+2/ 1- el + -_ 3'_,/_ _,

Once again we see from (B 2) the importance of the instability speed, 7/g 0. in the

normalization of the group velocity. Clearly, any physical mechanism of 'dispersion' for

an instability wave packet is necessarily very different from that for a classical packet

in a conservative system. Because of this scale transformation of X = (X, Z), all the

results presented in figures 3-5 are essentially valid for arbitrary U¢, 7, and g0-
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